Chung-Ang University and Yantai University Lectures on Direct Detection of Light Dark Matter

Bin Zhu zhubin@mail.nankai.edu.cn

August 13, 2021

1 Motivation of Light Dark Matter

2 Light Dark Matter Models

- 2.1 Scalar Mediators
- 2.2 Dark Photon Mediators

Theory of Dark Matter-Electron Scattering and Electronic Excitation
 Computational Framework for Dark Matter-Electron Scattering

Motivation of Light Dark Matter

Historical Perspective

Understanding the Electroweak Sector

 Discovery of Radioactivity 	(1890s)
 Fermi Scale Identified 	(1930s)
 Non-Abelian Gauge Theory 	(1950s)
 Higgs Mechanism 	(1960s)
 W/Z Bosons Discovered 	(1970s)
 Higgs Discovered 	(2010s)

Each step required revolutionary theoretical/experimental leaps

 $t\sim 100 {\rm years}$

Gordan Krnjaic, Brookhaven Forum 2017

Understanding the Dark Sector?

- Discovery of missing mass (1930s)
- Rotation curves
- Precision CMB measurements
- Dark Matter Discovery?

(1970s)(1990s)(2030s)?

Discovery Crisis

No clear target for non-gravitational contact \rightarrow Landscape of dark matter scales

Mass Scale of Dark Matter

Figure from talk by Tongyan Lin at Summer Institute 2019, Korea

- Bad news: DM-SM interactions are not obligatory. If nature is unkind, we
 may never know the right scale.
- Good news: Most discoverable DM candidates are in thermal equilibrium with us in the early universe. \rightarrow WIMP + Light DM

Direct Detection of WIMP

- Search for collisions of invisible particles with atomic nuclei \rightarrow Design driver: big exposure
- Coherent elastic scattering \rightarrow Big idea: Scatter coherently off all the nucleons in a nucleus: $R \sim A^2$ enhancement
- Expected low-energy of recoiling nucleus (with maximum of a few tens of keV) → Predicted signature: recoil induced ionization and scintillation

Direct WIMP Detection Experiments Worldwide

Numerous underground laboratories

Go underground to shield detector from cosmic rays and their decay products

Direct WIMP Detection Experiments Worldwide

Variety of techniques and dedicated experiments

Use only radiopure materials and fabrication techniques

Classifying WIMP Interactions

Very different at low energy, despite high energy similarities

WIMP Milstones

Cushman et al. arxiv:1310.8327

Neutrino floor is coming for WIMP!

WIMP Search Status

Figure from talk by Haibo Yu at CAU **BSM** workshop

"上穷碧落下黄泉,两处茫茫皆不见。"_{白居易《长恨歌》} He exhausted all avenues in heaven and the nether world. ... he could not bring her existence to light.

A Song of Immortal Regret, Bai Juyi (772-846)

Opportunity or Crisis Is Light dark matter possible target?

There is huge room for light dark matter detection \rightarrow Can we go lower in DM mass?

Why shall I learn light chief matter Luke, May the force (DM) be with you. (We have no other choices)

Kinematic No-go Theorem

When dark matter is lighter than $1{\rm GeV}$, it resulting recoil energy is smaller than threshold 1 ${\rm keV}$

Prove that there is inefficient energy transfer from DM to nucleus \rightarrow How to increase recoil energy

$$E_{\rm NR} = \frac{q^2}{2m_N} \le \frac{2\mu_{\chi N}^2 v^2}{m_N} \simeq 1 \,\mathrm{eV} \times \left(\frac{m_\chi}{100 \,\mathrm{MeV}}\right)^2 \left(\frac{20 \,\mathrm{GeV}}{m_N}\right) \quad \mathrm{vs} \quad E_{\rm DM} \sim \frac{1}{2} m_\chi v_\chi^2$$

Best nuclear recoil threshold is currently $E_R > 30 \text{eV}$ (CRESST-III) with DM reach of $m_{\chi} > 160 \text{ MeV}$. The kinematics of DM scattering against free nuclei is inefficient, and it does not always describe target response accurately.

- Decreasing the heat threshold of detector new experimental search. See Sec 3 and Sec ??
- Increasing the charge signal Migdal effect.
 See Sec. ??
- Depositing the whole kinetic energy DM absorption, Inelastic DM.
 See Sec. ??
- Add kinetic energy to light dark matter through exotic sources or processes - Accelerated DM.
 See Sec. ??

Light Dark Matter Models

What is Light Dark Matter m = keV - GeV

- Light dark matter needs new forces, otherwise it would be overproduced without such mediator
- Light dark matter has portal to Standard Model

Model Building for Consistent Production

Vast options and constraints which can be found in Prof Hyun Min's lecture

Standard Model

Possible dark sector

Theory landscape includes dark gauge forces, flavor, higgs, inelastic DM, etc. Motivation of Light Dark Matter

2 Light Dark Matter Models 2.1 Scalar Mediators 2.2 Dark Photon Mediators

Theory of Dark Matter-Electron Scattering and Electronic Excitation
 3.1 Computational Framework for Dark Matter-Electron Scattering

Motivation of Light Dark Matter

2 Light Dark Matter Models 2.1 Scalar Mediators 2.2 Dark Photon Mediators

Theory of Dark Matter-Electron Scattering and Electronic Excitation
 Computational Framework for Dark Matter-Electron Scattering

Theory of Dark Matter-Electron Scattering and Electronic Excitation

Motivation of Light Dark Matter

Light Dark Matter Models
 Scalar Mediators
 Dark Photon Mediators

Theory of Dark Matter-Electron Scattering and Electronic Excitation
 Computational Framework for Dark Matter-Electron Scattering

Why Electrons? Kinematics: Just replace m_N by m_e , we can obtain a much larger electron recoil energy!

$$E_{i} = m_{\chi} + m_{e} + \frac{1}{2}m_{\chi}v^{2} + E_{e,1}$$
$$E_{f} = m_{\chi} + m_{e} + \frac{|m_{\chi}\vec{v} - \vec{q}|^{2}}{2m_{\chi}} + E_{e,2}$$

From energy and momentum conservation $E_i = E_f$, we obtain

$$\Delta E_{1\to 2} = -\frac{q^2}{2m_{\chi}} + qv\cos\theta_{qv}$$

Zeroth-order Consideration

typical momentum transfer

typical size of the momentum transfer is set by the **electron's** momentum not DM.

$$q_{\rm typ} \simeq m_e v_e \sim Z_{\rm eff} \alpha m_e$$

typical energy transfer

in principle, all of the DM's kinetic energy is transferred to electron

$$\Delta E_{e,\mathrm{typ}} \simeq q_{\mathrm{typ}} v \sim 4 \text{ eV}$$

How to estimate which dark matter mass our sensitivity breaks down?

strategry

use energy and momentum conservation to derive it

- Initial dark matter energy $E_{\chi} = \frac{1}{2}m_{\chi}v_{\chi}^2$
- Minimal ionization energy E_{nl} (Binding energy)
- + $E_{\chi} \ge E_{nl}$ and $v_{\chi} \lesssim v_{\rm esc} + v_{\rm E}$

Result: lowest bound to have ionization

 $m_{\chi} \gtrsim 250 \text{keV} \times \left(\frac{E_{nl}}{1 \text{eV}}\right)$

Different target material can probe different mass range of light DM

General Formula for Free Electron

If dark matter scatters with free electron, it is just a conventional $2\to 2$ scattering process with cross section to be

$$\sigma v_{\rm free} = \frac{1}{4E'_{\chi}E'_{e}} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{d^{3}k'}{(2\pi)^{3}} \frac{1}{4E_{\chi}E_{e}} (2\pi)^{4} \delta\left(E_{i} - E_{f}\right) \delta^{3}\left(\vec{k} + \vec{q} - \vec{k'}\right) \left|\overline{\mathcal{M}_{\rm free}(\vec{q})}\right|^{2}$$

• momentum transfer effect is absorbed in dark matter form factor $F_{\rm DM}(q)$. It does not mean dark matter is composite particle

$$\left|\mathcal{M}_{\text{free}}(\vec{q})\right|^2 \equiv \overline{\left|\mathcal{M}_{\text{free}}\left(\alpha m_e\right)\right|^2} \times \left|F_{\text{DM}}(q)\right|^2$$

constant cross section is thus defined

$$\overline{\sigma}_e \equiv \frac{\mu_{\chi e}^2 |\mathcal{M}_{\text{free}}(\alpha m_e)|^2}{16\pi m_{\chi}^2 m_e^2}$$

Dark matter-Real electron scattering

Figure from talk by McCabe in Sixteenth Marcel Grossmann Meeting

Difference between Free Electron and Bound Electron Different Wave-Function

for free electrons

$$\left\langle \chi_{\vec{p}-\vec{q}}, e_{\vec{k}'} \left| H_{\text{int}} \right| \chi_{\vec{p}}, e_{\vec{k}} \right\rangle = C \mathcal{M}_{\text{free}}(\vec{q}) \times (2\pi)^3 \delta^3 \left(\vec{k} - \vec{q} - \vec{k}' \right)$$

The wave-functions for electrons are just plane wave.

for bound electrons

$$\left\langle \chi_{\vec{p}-\vec{q}}, e_2 \left| H_{\text{int}} \right| \chi_{\vec{p}}, e_1 \right\rangle = C \mathcal{M}_{\text{free}} \left(\vec{q} \right) \int \frac{V d^3 k}{(2\pi)^3} \widetilde{\psi}_2^* (\vec{k} + \vec{q}) \widetilde{\psi}_1 (\vec{k})$$

Final and initial electrons are not plane waves but to be solved by schrodinger equation. Challenge: we need to calculate bound/unbound states

Transition Probablity

$$\left|f_{1\to 2}(\vec{q})\right|^2 = \left|\int \frac{d^3k}{(2\pi)^3} \widetilde{\psi}_2^*\left(\vec{k}'\right) \widetilde{\psi}_1(\vec{k})\right|^2$$

Momentum conservation is now replaced by wave-function

In terms of dark matter form factor and electron transition probability, cross-section is rewritten

$$\sigma v_{1 \to 2} = \frac{\overline{\sigma}_e}{\mu_{\chi e}^2} V \int \frac{d^3 q}{4\pi} \frac{d^3 k'}{(2\pi)^3} \delta \left(\Delta E_{1 \to 2} + \frac{q^2}{2m_{\chi}} - qv \cos \theta_{qv} \right) \times \left| F_{\rm DM}(q) \right|^2 \left| f_{1 \to 2}(\vec{q}) \right|^2$$

- If only one final electron state, V = 1 and phase space d^3k' , d^3q .
- · Kinematics is respected by delta-function.
- Dark matter form factor $F_{DM}(q)$ captures momentum transfer for specific dark matter model.
- Transition probability captures of electron response after scattering

Deal with Phase Space

• Electron recoil energy $E_e = k'^2/2m_e$

ionized electron phase space
$$=\sum_{l'm'}\int \frac{k'^2dk'}{(2\pi)^3} = \frac{1}{2}\sum_{l'm'}\int \frac{k'^3d\ln E_e}{(2\pi)^3}$$

 We assume the potential is spherically symmetric and we ionize a full atomic shell therefore, sum over all initial and final angular momentum variables

$$\sigma v_{\rm ion} = \frac{\overline{\sigma}_e}{\mu_{\chi e}^2} \sum_{n'l'm'} \int \frac{d^3q}{8\pi} \frac{k'^3 d\ln E_e}{(2\pi)^3} \delta \left(\Delta E_{i \to k'l'm'} + \frac{q^2}{2m_{\chi}} - qv \cos \theta_{qv} \right) |F_{\rm DM}(q)|^2 |f_{i \to k'l'm'}(\vec{q})|^2$$

Why using E_e

We want to have a similar behavior with DM-nucleus scattering

Absorb phase space of electron into ionization factor

$$|f_{\rm ion}(k',q)|^2 = \frac{2k'^3}{(2\pi)^3} \sum_{n'l'm'} \left| \int d^3x \psi^*_{k'l'm'}(\vec{x}) \psi_i(\vec{x}) e^{i\vec{q}\cdot\vec{x}} \right|^2$$

• Simplified version: outgoing electron is free plane wave, initial electron is part of a spherically symmetric atom with full shells. See Essig or Ran Ding

$$\left|f_{ion}^{i}(k',q)\right|^{2} = \frac{k'^{2}}{4\pi^{3}q} \int_{k'-q}^{k'+q} kdk |\chi_{nl}(k)|^{2}$$

 More realistic version: solve radial Schrödinger equation for the exact unbound wavefunctions, using the effective potential extracted from the bounded wavefunctions. See Timon Emken or Zheng-Liang Liang, Lei Wu

Differential Cross-Section over Electron Recoils Evaluate the energy conservation δ -function, and q_{max} and q_{min} ?

$$\frac{\mathrm{d}\langle \boldsymbol{\sigma} \boldsymbol{v} \rangle}{\mathrm{d} \ln E_e} = \frac{\overline{\boldsymbol{\sigma}}_e}{8\mu_{\chi e}^2} \int_{q_{\min}}^{q_{\max}} q \, \mathrm{d}q |f_{\mathrm{ion}}(k',q)|^2 |F_{\mathrm{DM}}(q)|^2 \, \eta(v_{\min})$$

We do not know where DM comes from \rightarrow Astrophysics Uncertainty

Need to perform a velocity distribution integral to get statistical result \rightarrow Average

$$\eta(v_{\min}) = \int_{v_{\min}} \frac{\mathrm{d}^3 v}{v} f_{\mathrm{MB}}(v)$$

• $f_{\rm MB}$ is Maxwell-Boltzmann distribution $f_{\rm MB} = \frac{1}{N_{\rm esc}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3v^2/2\sigma_v^2}$

+ v_{\min} is the minimal velocity for ionziation and q_{\min} , q_{\max} are determined by kinematics

Event rate = DM flux \times particle physics \times detector response

$$R = N_T \frac{\rho_{\chi}}{m_{\chi}} \int_{E_{e,cut}} \mathrm{d}\ln E_e \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_e}$$

Experiment prefers events rather than cross-section

R = number of events/time/volume

- N_T is the number of target atoms \rightarrow material dependent
- + ho_{χ} = $0.4 {\rm GeV/cm^3}$ is the local DM density
- $\mathbf{R} \times \mathbf{Exposure} = \mathbf{Events}$

Simplest Target: Isolated Atom There is no many-body correlation

Typical atom: Hydrogen, Xenon, and Argon

 $\Delta E_B \sim 10 \text{eV}, \quad m_{\chi} > 2.5 \text{MeV}$

Ionization Factor for Isolated Atom

relevant quantity is transition probability

$$f_{1\to 2}(\mathbf{q}) = \int \mathrm{d}^3 x \psi^*_{k'\ell'm'}(\mathbf{x}) e^{i\mathbf{x}\cdot\mathbf{q}} \psi_{n\ell m}(\mathbf{x})$$

 Expressed the initial and final state electron wave functions in terms of spherical coordinates

$$\psi_{n\ell m}(\mathbf{x}) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi)$$

Thus transition probability is function of scalar product of radial wave function

$$\begin{split} f_{1\to2}(\mathbf{q}) &= \int \mathrm{d}^3 x R_{k'\ell'}^*(r) Y_{\ell'}^{m'*}(\theta,\phi) R_{n\ell}(r) Y_{\ell}^m(\theta,\phi) \times 4\pi \sum_{L=0}^{\infty} i^L j_L(qr) \sum_{M=-L}^{+L} Y_L^{M*}\left(\theta_q,\phi_q\right) Y_L^M(\theta,\phi) \\ &= 4\pi \sum_{L=0}^{\infty} i^L \sum_{M=-L}^{L} I_1(q) Y_L^{M*}\left(\theta_q,\phi_q\right) \int \mathrm{d}\Omega Y_{\ell'}^{m'*}(\theta,\phi) Y_{\ell}^m(\theta,\phi) Y_L^M(\theta,\phi) \end{split}$$

Radial Part and Angular Part

For angular part: the integral over three spherical harmonics can be re-written in terms of the Wigner 3*j* symbols

$$\begin{split} f_{1\to2}(\mathbf{q}) &= \sqrt{4\pi} \sum_{L=|\ell-\ell'|}^{\ell+\ell'} i^L I_1(q) \sum_{M=-L}^{+L} Y_L^{M*} \left(\theta_q, \phi_q\right) (-1)^{m'} \sqrt{(2\ell+1)(2\ell'+1)(2L+1)} \\ &\times \left(\begin{array}{cc} \ell & \ell' & L \\ 0 & 0 & 0 \end{array}\right) \times \left(\begin{array}{cc} \ell & \ell' & L \\ m & -m' & M \end{array}\right) \end{split}$$

The orthogonality of Wigner 3j symbols, allows us to sum over the L' and M'

$$\sum_{m=-\ell}^{\ell} \sum_{m'=-\ell'}^{\ell'} |f_{1\to 2}(\mathbf{q})|^2 = 4\pi \sum_{L} I_1(q)^2 \sum_{M} Y_L^{M*}\left(\theta_q, \phi_q\right)$$

Radial part: the core is wavefunction

 $I_1(q)\equiv\int \mathrm{d}r r^2 R^*_{k'\ell'}(r) R_{n\ell}(r) j_L(qr)$

Initial and Final State Wave Functions

Initial state wave-function is Roothaan-Hartree-Fock (RHF) ground state wave function

It is just a linear combination of Slater-type orbitals

$$R_{n\ell}(r) = a_0^{-3/2} \sum_j C_{j\ell n} \frac{(2Z_{j\ell})^{n'_{j\ell}+1/2}}{\sqrt{(2n'_{j\ell})!}} \left(\frac{r}{a_0}\right)^{n'_{j\ell}-1} \exp\left(-Z_{j\ell}\frac{r}{a_0}\right)$$

Final state wave function is similar with hydrogen wave function except energy is positive and spectra is continuum

It is solved by the Schrodinger equation with a hydrogenic potential $-Z_{eff}/r$

$$R_{k'\ell'}(r) = \frac{(2\pi)^{3/2}}{\sqrt{V}} \left(2k'r\right)^{\ell'} \frac{\sqrt{\frac{2}{\pi}} \left| \Gamma\left(\ell' + 1 - \frac{iZ_{\rm eff}}{k'a_0}\right) \right| e^{\frac{\pi Z_{\rm eff}}{2k'a_0}}}{(2\ell' + 1)!} e^{-ik'r} {}_1F_1\left(\ell' + 1 + \frac{iZ_{\rm eff}}{k'a_0}, 2\ell' + 2, 2ik'r\right)^{1/2} e^{-ik'r} e^{-ik'r}$$

Scattering Kinematics

In terms of energy conservation

$$\mathbf{v} \cdot \mathbf{q} = \Delta E_{1 \to 2} + \frac{q^2}{2m_{\chi}}$$

• Minimal velocity is obtained by setting $\cos \theta_{qv} = 1$

$$v_{\min}(k',q) = \frac{E_B + k'^2/(2m_e)}{q} + \frac{q}{2m_{\chi}}$$

• Taking $\cos \theta_{qv} = 1$, $E_e = 0$ and $v = v_{max}$, the range of q is

$$q_{\min} = m_{\chi} v_{\max} - \sqrt{m_{\chi}^2 v_{\max}^2 - 2m_{\chi} E_B}$$
$$= \frac{E_B}{v_{\max}}, \quad \text{for } m_{\chi} \to \infty$$
$$q_{\max} = m_{\chi} v_{\max} + \sqrt{m_{\chi}^2 v_{\max}^2 - 2m_{\chi} E_B}$$

a XENON detector

i.e. XENON10, XENON100, XENON1T, LUX

DM-electron scattering = S2 only signal

measures PhotoElectrons measure recoil

*can also do this with LAr detectors like DarkSide

$$\frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}\mathrm{S2}} = \int d\ln E_e \epsilon(\mathrm{S2}) P(\mathrm{S2} \mid \Delta E_e) \frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}\ln E_e}$$

- + $\epsilon(S2)$ is the detector efficiency, S2 = PE
- The probability function *P* that converts energy transfer into the photoelectron (PE) in S2
- $\Delta E_e = E_e + E_{nl}$

True Signal Rate

We can compare our signal rate dR/dS2 to data directly to obtain exclusion limit

Detector Efficiency

Take XENON1T as example

$$P\left(\mathrm{S2}\mid\Delta E_{e}\right) = \sum_{n_{e}^{\mathrm{s}},n_{e}} P\left(\mathrm{S2}\mid n_{e}^{\mathrm{s}}\right) \cdot P\left(n_{e}^{\mathrm{s}}\mid n_{e}\right) \cdot P\left(n_{e}\mid\langle n_{e}\rangle\right)$$

• $P(n_e \mid \langle n_e \rangle)$ is the number of electrons escaping the interaction point, which follows a binomial distribution

$$P(n_e \mid \langle n_e \rangle) = \text{binom} \left(n_e \mid N_Q, f_e \right) = C_{N_Q}^{n_e} f_e^{n_e} (1 - f_e)^{N_Q - n_e}, N_Q = \Delta E_e / 13.8 \text{eV}$$

- $P(n_e^s \mid n_e) = 80\%$ is possibility of electrons surviving the drift in Xenon1T
- PE transformation probability $P(S2 | n_e^s)$ is Gaussian distribution

$$P\left(\mathrm{S2} \mid n_e^{\mathrm{s}}\right) = \mathrm{Gauss}\left(\mathrm{S2} \mid g_2 n_e^{\mathrm{s}}, \sigma_{\mathrm{S2}}\right)$$

obs. events
126
60
12
3
2
0
2

XENON1T		
bin $[S2]$	obs. e	vents
[150,200)	8	
[200, 250)	7	
[250, 300)	2	
[300,350)	1	
-	-	
-	-	
-	-	

Upper bound comes from the Earth attenuation effect. See Sec ??

Brief Summary on DM Induced Electron Ionizations

- Complication: Target electrons are bound states.
- Electrons are not in a momentum eigenstates
- Example: Ionization spectrum for isolated atom:

$$\begin{split} \frac{\mathrm{d}R_{\mathrm{ion}}}{\mathrm{d}E_{e}} &= \frac{1}{m_{N}} \frac{\rho_{\chi}}{m_{\chi}} \sum_{nl} \frac{\left\langle \mathrm{d}\sigma_{\mathrm{ion}}^{nl} v \right\rangle}{\mathrm{d}E_{e}} \\ \frac{\mathrm{d}\left\langle \sigma_{\mathrm{ion}}^{nl} v \right\rangle}{\mathrm{d}E_{e}} &= \frac{\sigma_{e}}{8\mu_{\chi e}^{2} E_{e}} \int \mathrm{d}qq \left| F_{\mathrm{DM}}(q) \right|^{2} \left| f_{\mathrm{ion}}^{nl} \left(k', q \right) \right|^{2} \eta \left(v_{\mathrm{min}} \left(\Delta E_{e}, q \right) \right) \end{split}$$

- Predictions require the precise evaluation of an ionization form factor.
- There is still theoretical uncertainty in the evaluation of the ionization form factors. See 1904.07127.
- For crystals, this requires methods from condensed matter physics. form factors.

- detector specific backgrounds i.e. e⁻ gets trapped in liquid-gas interface and is later released
 Need a better detector setup
- ionization energy (12.1eV) limits DM mass reach to few MeV Find a material with smaller ionization energy