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Motivation of Light Dark
Matter



Understanding the Electroweak Sector
• Discovery of Radioactivity (1890s)

• Fermi Scale Identified (1930s)

• Non-Abelian Gauge Theory (1950s)

• Higgs Mechanism (1960s)

• W/Z Bosons Discovered (1970s)

• Higgs Discovered (2010s)

Each step required revolutionary theoretical/experimental leaps
t ∼ 100years

Gordan Krnjaic, Brookhaven Forum 2017

Historical Perspective



Understanding the Dark Sector?
• Discovery of missing mass (1930s)

• Rotation curves (1970s)

• Precision CMB measurements (1990s)

• Dark Matter Discovery? (2030s)?

Discovery Crisis
No clear target for non-gravitational contact→ Landscape of dark matter scales

Yesterday Once More



Figure from talk by Tongyan Lin at Summer Institute 2019, Korea

• Bad news: DM-SM interactions are not obligatory. If nature is unkind, we
may never know the right scale.

• Good news: Most discoverable DM candidates are in thermal equilibrium
with us in the early universe. →WIMP + Light DM

Mass Scale of Dark Matter



• Search for collisions of invisible particles with atomic nuclei→ Design
driver: big exposure

• Coherent elastic scattering→ Big idea: Scatter coherently o� all the
nucleons in a nucleus: R ∼ A2 enhancement

• Expected low-energy of recoiling nucleus (with maximum of a few tens of
keV)→ Predicted signature: recoil induced ionization and scintillation

Direct Detection of WIMP



Numerous underground laboratories
Go underground to shield detector from cosmic rays and their decay products

Direct WIMP Detection Experiments Worldwide



Variety of techniques and dedicated experiments
Use only radiopure materials and fabrication techniques

Direct WIMP Detection Experiments Worldwide



Very di�erent at low energy, despite high energy similarities

Classifying WIMP Interactions



Cushman et al. arxiv:1310.8327

Neutrino floor is coming for WIMP!

WIMP Milstones



Figure from talk by Haibo Yu at CAU
BSM workshop



There is huge room for light dark matter detection→ Can we go lower in DM
mass?

Opportunity or Crisis
Is Light dark matter possible target?



Why shall I learn light dark matter?
Luke,
May the force (DM) be with you. (We
have no other choices)



Kinematic No-go Theorem
When dark matter is lighter than 1GeV, it resulting recoil energy is smaller than
threshold 1keV
Prove that there is ine�cient energy transfer from DM to nucleus→ How to
increase recoil energy

ENR =
q2

2mN
≤

2µ2
χN v

2

mN
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( mχ
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)2
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)
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χ

Best nuclear recoil threshold is currently ER > 30eV (CRESST-III) with DM reach
of mχ > 160 MeV.
The kinematics of DM scattering against free nuclei is ine�cient, and it does
not always describe target response accurately.

Why is nucleus bad at light dark matter?



• Decreasing the heat threshold of detector - new experimental search.
See Sec 3 and Sec ??

• Increasing the charge signal - Migdal e�ect.
See Sec. ??

• Depositing the whole kinetic energy - DM absorption, Inelastic DM.
See Sec. ??

• Add kinetic energy to light dark matter through exotic sources or
processes - Accelerated DM.
See Sec. ??

Strategies for detecting nuclear recoils from Light DM



Light Dark Matter Models



• Light dark matter needs new forces, otherwise it would be overproduced
without such mediator

• Light dark matter has portal to Standard Model

Model Building for Consistent Production
Vast options and constraints which can be found in Prof Hyun Min’s lecture

What is Light Dark Matter
m = keV −GeV
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Theory of Dark
Matter-Electron Scattering
and Electronic Excitation
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Ei = mχ + me +
1
2mχv

2 + Ee,1

E f = mχ + me +
|mχ®v−®q|

2

2mχ
+ Ee,2

From energy and momentum conservation Ei = E f , we obtain

∆E1→2 = −
q2

2mχ
+ qv cos θqv

Why Electrons?
Kinematics: Just replace mN by me, we can obtain a much larger electron recoil energy!



typical momentum transfer
typical size of the momentum transfer is set by the electron’s momentum not
DM.

qtyp ' meve ∼ Zeffαme

typical energy transfer

in principle, all of the DM’s kinetic energy is transferred to
electron

∆Ee,typ ' qtypv ∼ 4 eV

Zeroth-order Consideration



How to estimate which dark matter mass our sensitivity breaks down?
strategry
use energy and momentum conservation to derive it

• Initial dark matter energy Eχ = 1
2 mχv

2
χ

• Minimal ionization energy Enl (Binding energy)
• Eχ ≥ Enl and vχ . vesc + vE

Result: lowest bound to have ionization
mχ & 250keV ×

(
Enl

1eV

)
Di�erent target material can probe di�erent mass range of light DM

Minimal Mass



If dark matter scatters with free electron, it is just a conventional 2→ 2
scattering process with cross section to be

σvfree =
1

4E′χE′e

∫
d3q
(2π)3

d3k′

(2π)3
1

4EχEe
(2π)4δ

(
Ei − E f

)
δ3

(
®k + ®q − ®k′

) ���Mfree( ®q)
���2

• momentum transfer e�ect is absorbed in dark matter form
factor FDM(q). It does not mean dark matter is composite
particle

|Mfree( ®q)|
2
≡ |Mfree (αme)|

2 × |FDM(q)|2

• constant cross section is thus defined

σe ≡
µ2
χe |Mfree (αme)|

2

16πm2
χm2

e

General Formula for Free Electron



Figure from talk by McCabe in Sixteenth Marcel Grossmann Meeting

Dark matter-Real electron scattering



for free electrons〈
χ®p−®q, e®k′ |Hint | χ®p, e®k

〉
= CMfree( ®q) × (2π)3δ3

(
®k − ®q − ®k ′

)
The wave-functions for electrons are just plane wave.

for bound electrons〈
χ®p−®q, e2 |Hint | χ®p, e1

〉
= CMfree ( ®q)

∫
Vd3k
(2π)3

ψ̃∗2(
®k + ®q)ψ̃1(®k)

Final and initial electrons are not plane waves but to be solved by schrodinger
equation. Challenge: we need to calculate bound/unbound states

Transition Probablity

| f1→2( ®q)|
2
=

���∫ d3k
(2π)3

ψ̃∗2

(
®k ′

)
ψ̃1(®k)

���2
Momentum conservation is now replaced by wave-function

Di�erence between Free Electron and Bound Electron
Di�erent Wave-Function



In terms of dark matter form factor and electron transition probability,
cross-section is rewritten

σv1→2 =
σe

µ2
χe

V
∫

d3q
4π

d3k ′

(2π)3
δ

(
∆E1→2 +

q2

2mχ
− qv cos θqv

)
× |FDM(q)|2 | f1→2( ®q)|

2

• If only one final electron state, V = 1 and phase space d3k ′, d3q.
• Kinematics is respected by delta-function.
• Dark matter form factor FDM(q) captures momentum transfer for specific
dark matter model.

• Transition probability captures of electron response after scattering

General Formula for Bound Electron



• Electron recoil energy Ee = k ′2/2me

ionized electron phase space =
∑
l′m′

∫
k ′2dk ′

(2π)3
=

1

2

∑
l′m′

∫
k ′3d ln Ee

(2π)3

• We assume the potential is spherically symmetric and we ionize a full
atomic shell therefore, sum over all initial and final angular momentum
variables

σvion =
σe

µ2
χe

∑
n′l′m′

∫
d3q
8π

k ′3d ln Ee

(2π)3
δ

(
∆Ei→k′l′m′ +

q2

2mχ
− qv cos θqv

)
|FDM(q)|2 | fi→k′l′m′( ®q)|

2

Why using Ee

We want to have a similar behavior with DM-nucleus scattering

Deal with Phase Space



Absorb phase space of electron into ionization factor

| fion (k ′, q)|
2
=

2k ′3

(2π)3

∑
n′l′m′

����∫ d3xψ∗k′l′m′(®x)ψi(®x)e
i ®q · ®x

����2
• Simplified version: outgoing electron is free plane wave, initial electron is
part of a spherically symmetric atom with full shells. See Essig or Ran Ding�� f iion (k ′, q)��2 = k ′2

4π3q

∫ k′+q

k′−q

kdk |χnl(k)|2

• More realistic version: solve radial Schrödinger equation for the exact
unbound wavefunctions, using the e�ective potential extracted from the
bounded wavefunctions. See Timon Emken or Zheng-Liang Liang, Lei Wu

Ionization Factor



d〈σv〉

d ln Ee
=

σe

8µ2
χe

∫ qmax

qmin

q dq | fion(k ′, q)|2 |FDM(q)|2 η(vmin)

We do not know where DM comes from→ Astrophysics Uncertainty
Need to perform a velocity distribution integral to get statistical result→
Average

η (vmin) =

∫
vmin

d3v

v
fMB(v)

• fMB is Maxwell-Boltzmann distribution fMB =
1

Nesc

(
3

2πσ2
v

)3/2

e−3v
2/2σ2

v

• vmin is the minimal velocity for ionziation and qmin, qmax are determined by
kinematics

Di�erential Cross-Section over Electron Recoils
Evaluate the energy conservation δ-function, and qmax and qmin?



Event rate = DM flux × particle physics × detector response

R = NT

ρχ

mχ

∫
Ee,cut

d ln Ee
d〈σv〉

d ln Ee

Experiment prefers events rather than cross-section
R = number of events/time/volume

• NT is the number of target atoms→material dependent
• ρχ = 0.4GeV/cm3 is the local DM density
• R × Exposure = Events

Signal Rate
Bridge to connect theory and experiment



Typical atom: Hydrogen, Xenon, and Argon

∆EB ∼ 10eV, mχ > 2.5MeV

Simplest Target: Isolated Atom
There is no many-body correlation



• relevant quantity is transition probability

f1→2(q) =

∫
d3xψ∗k′`′m′(x)e

ix·qψn`m(x)

• Expressed the initial and final state electron wave functions in terms of
spherical coordinates

ψn`m(x) = Rn`(r)Ym
` (θ, φ)

• Thus transition probability is function of scalar product of radial wave
function

f1→2(q) =

∫
d3xR∗k′`′(r)Y

m′∗
`′ (θ, φ)Rn`(r)Ym

` (θ, φ) × 4π
∞∑
L=0

iL jL(qr)
+L∑

M=−L

YM∗
L

(
θq, φq

)
YM
L (θ, φ)

= 4π
∞∑
L=0

iL
L∑

M=−L

I1(q)YM∗
L

(
θq, φq

) ∫
dΩYm′∗

`′ (θ, φ)Y
m
` (θ, φ)Y

M
L (θ, φ)

Ionization Factor for Isolated Atom



For angular part: the integral over three spherical harmonics can be re-written
in terms of the Wigner 3 j symbols

f1→2(q) =
√
4π

`+`′∑
L= |`−`′ |

iL I1(q)
+L∑

M=−L

YM∗
L

(
θq, φq

)
(−1)m

′
√
(2` + 1) (2`′ + 1) (2L + 1)

×

(
` `′ L
0 0 0

)
×

(
` `′ L
m −m′ M

)
The orthogonality of Wigner 3 j symbols, allows us to sum over the L ′ and M ′∑̀

m=−`

`′∑
m′=−`′

| f1→2(q)|
2 = 4π

∑
L

I1(q)2
∑
M

YM∗
L

(
θq, φq

)
Radial part: the core is wavefunction
I1(q) ≡

∫
drr2R∗

k′`′
(r)Rn`(r) jL(qr)

Radial Part and Angular Part



Initial state wave-function is Roothaan-Hartree-Fock (RHF) ground state
wave function
It is just a linear combination of Slater-type orbitals

Rn`(r) = a−3/20

∑
j

Cj`n

(
2Z j`

)n′
j`+1/2√(

2n′
j`

)
!

(
r
a0

)n′
j`−1

exp

(
−Z j`

r
a0

)

Final state wave function is similar with hydrogen wave function except
energy is positive and spectra is continuum
It is solved by the Schrodinger equation with a hydrogenic potential −Ze f f /r

Rk′`′(r) =
(2π)3/2
√

V
(2k ′r)`

′

√
2
π

���Γ (
`′ + 1 − iZeff

k′a0

)��� e
πZeff
2k′a0

(2`′ + 1)!
e−ik

′r
1F1

(
`′ + 1 +

iZeff

k ′a0
, 2`′ + 2, 2ik ′r

)

Initial and Final State Wave Functions



In terms of energy conservation

v · q = ∆E1→2 +
q2

2mχ

• Minimal velocity is obtained by setting cos θqv = 1

vmin (k ′, q) =
EB + k ′2/(2me)

q
+

q
2mχ

• Taking cos θqv = 1, Ee = 0 and v = vmax, the range of q is

qmin = mχvmax −

√
m2
χv

2
max − 2mχEB

=
EB

vmax
, for mχ →∞

qmax = mχvmax +

√
m2
χv

2
max − 2mχEB

Scattering Kinematics



PE, you told me, we measure recoil
energy



dRion

dS2
=

∫
d ln Eeε(S2)P (S2 | ∆Ee)

dRion

d ln Ee

• ε(S2) is the detector e�ciency, S2 = PE

• The probability function P that converts energy transfer into the
photoelectron (PE) in S2

• ∆Ee = Ee + Enl

True Signal Rate
We can compare our signal rate dR/dS2 to data directly to obtain exclusion limit

Real Event Rate
Frome Recoil energy Ee to PE



Take XENON1T as example

Detector E�ciency



P (S2 | ∆Ee) =
∑
ns
e,ne

P
(
S2 | ns

e

)
· P

(
ns
e | ne

)
· P (ne | 〈ne〉)

• P (ne | 〈ne〉) is the number of electrons escaping the interaction point, which
follows a binomial distribution

P (ne | 〈ne〉) = binom
(
ne | NQ, fe

)
= Cne

NQ
f nee (1 − fe)NQ−ne, NQ = ∆Ee/13.8eV

• P
(
ns
e | ne

)
= 80% is possibility of electrons surviving the drift in Xenon1T

• PE transformation probability P
(
S2 | ns

e

) is Gaussian distribution

P
(
S2 | ns

e

)
= Gauss

(
S2 | g2ns

e, σS2

)

Probability Function P (S2 | ∆Ee)



XENON10 and XENON1T Data



Upper bound comes from the Earth attenuation e�ect. See Sec ??

Find Limits
Signal + Backgrounds < Number of observed events



• Complication: Target electrons are bound states.
• Electrons are not in a momentum eigenstates
• Example: Ionization spectrum for isolated atom:

dRion

dEe
=

1

mN

ρχ

mχ

∑
nl

〈
dσnl

ionv
〉

dEe

d
〈
σnl

ionv
〉

dEe
=

σe

8µ2
χeEe

∫
dqq |FDM(q)|2

�� f nlion (k
′, q)

��2 η (vmin (∆Ee, q))

• Predictions require the precise evaluation of an ionization form factor.
• There is still theoretical uncertainty in the evaluation of the ionization form
factors. See 1904.07127.

• For crystals, this requires methods from condensed matter physics. form
factors.

Brief Summary on DM Induced Electron Ionizations



• detector specific backgrounds i.e. e− gets trapped in liquid-gas interface
and is later released
Need a better detector setup

• ionization energy (12.1eV) limits DM mass reach to few MeV
Find a material with smaller ionization energy

Challenge for Isolated Atom
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